Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37892127

RESUMO

Dynein motors facilitate the majority of minus-end-directed transport events on microtubules. The dynein adaptor Bicaudal D2 (BicD2) recruits the dynein machinery to several cellular cargo for transport, including Nup358, which facilitates a nuclear positioning pathway that is essential for the differentiation of distinct brain progenitor cells. Previously, we showed that Nup358 forms a "cargo recognition α-helix" upon binding to BicD2; however, the specifics of the BicD2-Nup358 interface are still not well understood. Here, we used AlphaFold2, complemented by two additional docking programs (HADDOCK and ClusPro) as well as mutagenesis, to show that the Nup358 cargo-recognition α-helix binds to BicD2 between residues 747 and 774 in an anti-parallel manner, forming a helical bundle. We identified two intermolecular salt bridges that are important to stabilize the interface. In addition, we uncovered a secondary interface mediated by an intrinsically disordered region of Nup358 that is directly N-terminal to the cargo-recognition α-helix and binds to BicD2 between residues 774 and 800. This is the same BicD2 domain that binds to the competing cargo adapter Rab6, which is important for the transport of Golgi-derived and secretory vesicles. Our results establish a structural basis for cargo recognition and selection by the dynein adapter BicD2, which facilitates transport pathways that are important for brain development.


Assuntos
Dineínas , Proteínas Associadas aos Microtúbulos , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transporte Biológico , Modelos Estruturais
2.
Elife ; 112022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35229716

RESUMO

Nup358, a protein of the nuclear pore complex, facilitates a nuclear positioning pathway that is essential for many biological processes, including neuromuscular and brain development. Nup358 interacts with the dynein adaptor Bicaudal D2 (BicD2), which in turn recruits the dynein machinery to position the nucleus. However, the molecular mechanisms of the Nup358/BicD2 interaction and the activation of transport remain poorly understood. Here for the first time, we show that a minimal Nup358 domain activates dynein/dynactin/BicD2 for processive motility on microtubules. Using nuclear magnetic resonance titration and chemical exchange saturation transfer, mutagenesis, and circular dichroism spectroscopy, a Nup358 α-helix encompassing residues 2162-2184 was identified, which transitioned from a random coil to an α-helical conformation upon BicD2 binding and formed the core of the Nup358-BicD2 interface. Mutations in this region of Nup358 decreased the Nup358/BicD2 interaction, resulting in decreased dynein recruitment and impaired motility. BicD2 thus recognizes Nup358 through a 'cargo recognition α-helix,' a structural feature that may stabilize BicD2 in its activated state and promote processive dynein motility.


Assuntos
Dineínas , Proteínas Associadas aos Microtúbulos , Chaperonas Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares , Complexo Dinactina/química , Complexo Dinactina/metabolismo , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Conformação Proteica em alfa-Hélice
3.
Biochem Biophys Rep ; 29: 101194, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35024461

RESUMO

High-resolution experiments revealed that a single myosin-Va motor can transport micron-sized cargo on actin filaments in a stepwise manner. However, intracellular cargo transport is mediated through the dense actin meshwork by a team of myosin Va motors. The mechanism of how motors interact mechanically to bring about efficient cargo transport is still poorly understood. This study describes a stochastic model where a quantitative understanding of the collective behaviors of myosin Va motors is developed based on cargo stiffness. To understand how cargo properties affect the overall cargo transport, we have designed a model in which two myosin Va motors were coupled by wormlike chain tethers with persistence length ranging from 10 to 80 nm and contour length from 100 to 200 nm, and predicted distributions of velocity, run length, and tether force. Our analysis showed that these parameters are sensitive to both the contour and persistence length of cargo. While the velocity of two couple motors is decreased compared to a single motor (from 531 ± 251 nm/s to as low as 318 ± 287 nm/s), the run length (716 ± 563 nm for a single motor) decreased for short, rigid tethers (to as low as 377 ± 187 µm) and increased for long, flexible tethers (to as high as 1.74 ± 1.50 µm). The sensitivity of processive properties to tether rigidity (persistence length) was greatest for short tethers, which caused the motors to exhibit close, yet anti-cooperative coordination. Motors coupled by longer tethers stepped more independently regardless of tether rigidity. Therefore, the properties of the cargo or linkage must play an essential role in motor-motor communication and cargo transport.

4.
Traffic ; 21(7): 463-478, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32378283

RESUMO

The dynein adaptor Drosophila Bicaudal D (BicD) is auto-inhibited and activates dynein motility only after cargo is bound, but the underlying mechanism is elusive. In contrast, we show that the full-length BicD/F684I mutant activates dynein processivity even in the absence of cargo. Our X-ray structure of the C-terminal domain of the BicD/F684I mutant reveals a coiled-coil registry shift; in the N-terminal region, the two helices of the homodimer are aligned, whereas they are vertically shifted in the wild-type. One chain is partially disordered and this structural flexibility is confirmed by computations, which reveal that the mutant transitions back and forth between the two registries. We propose that a coiled-coil registry shift upon cargo-binding activates BicD for dynein recruitment. Moreover, the human homolog BicD2/F743I exhibits diminished binding of cargo adaptor Nup358, implying that a coiled-coil registry shift may be a mechanism to modulate cargo selection for BicD2-dependent transport pathways.


Assuntos
Proteínas de Drosophila , Dineínas , Animais , Movimento Celular , Proteínas de Drosophila/genética , Dineínas/genética , Dineínas/metabolismo , Humanos , Domínios Proteicos , Sistema de Registros
5.
Field Crops Res ; 241: 107567, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534298

RESUMO

Farmers in low-elevation coastal zones in South Asia face numerous food security and environmental sustainability challenges. This study evaluated the effects of nitrogen (N) rate and source on the agronomic, economic, and environmental performance of transplanted and rainfed 'aman' (monsoon-season) rice in Bangladesh's non-saline coastal areas. Fifty-one farmers participated in trials distributed across two landscape positions described as 'highlands' (on which field water inundation depth typically remains <30 cm) and 'medium-highlands' (inundation depths 30-90 cm) planted singly with varieties appropriate to each position (BRRI dhan 39 for highlands and the traditional variety Bhushiara for medium-highlands). Researcher designed but farmer-managed dispersed plots were located across three district sub-units (Barisal Sadar, Hizla, Mehendigonj) and compared N source (broadcast prilled urea or deep-placed urea super granules (USG)) at four N rates. Rice grown on medium-highlands did not respond to increasing N rates beyond 28 kg N ha-1, indicating that little fertilization is required to maintain yields and profitability while limiting environmental externalities. In highland locations, clear trade-offs between agronomic and environmental goals were observed. To increase yields and profits for BRRI dhan 39, 50 or 75 kg N ha-1 was often needed, although these rates were associated with declining energy and increasing greenhouse gas (GHG) efficiencies. Compared to prilled urea, USG had no impact on yield, economic, energy and GHG efficiencies in medium-highland locations. USG conversely led to 4.2-5.8% yield improvements at higher N rates on highlands, while also increasing energy efficiency. Given the observed yield, agronomic and economic benefit of USG, our preliminary results that farmers can consider use of USG at 50 kg N ha-1 to produce yields equivalent to 75 kg N ha-1 of prilled urea in highland landscapes, while also reducing environmental externalities. These results suggest that when assessing sustainable intensification (SI) strategies for rice in South Asia's coastal zones, N requirements should be evaluated within specific production contexts (e.g. cultivar type within landscape position) to identify options for increasing yields without negatively influencing environmental and economic indicators. Similar studies in other parts of coastal South Asia could help policy-makers prioritize investments in agriculture with the aim of improving rice productivity while also considering income generation and environmental outcomes.

6.
Elife ; 72018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29944116

RESUMO

We investigated the role of full-length Drosophila Bicaudal D (BicD) binding partners in dynein-dynactin activation for mRNA transport on microtubules. Full-length BicD robustly activated dynein-dynactin motility only when both the mRNA binding protein Egalitarian (Egl) and K10 mRNA cargo were present, and electron microscopy showed that both Egl and mRNA were needed to disrupt a looped, auto-inhibited BicD conformation. BicD can recruit two dimeric dyneins, resulting in faster speeds and longer runs than with one dynein. Moving complexes predominantly contained two Egl molecules and one K10 mRNA. This mRNA-bound configuration makes Egl bivalent, likely enhancing its avidity for BicD and thus its ability to disrupt BicD auto-inhibition. Consistent with this idea, artificially dimerized Egl activates dynein-dynactin-BicD in the absence of mRNA. The ability of mRNA cargo to orchestrate the activation of the mRNP (messenger ribonucleotide protein) complex is an elegant way to ensure that only cargo-bound motors are motile.


Assuntos
Movimento Celular/genética , Proteínas de Drosophila/genética , Dineínas/genética , Complexo Dinactina/genética , Complexos Multiproteicos , Ligação Proteica/genética , Multimerização Proteica , Transporte Proteico , Transporte de RNA/genética , RNA Mensageiro/genética , Ribonucleoproteínas/genética
7.
Nat Commun ; 8: 15692, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569841

RESUMO

Intracellular cargo transport relies on myosin Va molecular motor ensembles to travel along the cell's three-dimensional (3D) highway of actin filaments. At actin filament intersections, the intersecting filament is a structural barrier to and an alternate track for directed cargo transport. Here we use 3D super-resolution fluorescence imaging to determine the directional outcome (that is, continues straight, turns or terminates) for an ∼10 motor ensemble transporting a 350 nm lipid-bound cargo that encounters a suspended 3D actin filament intersection in vitro. Motor-cargo complexes that interact with the intersecting filament go straight through the intersection 62% of the time, nearly twice that for turning. To explain this, we develop an in silico model, supported by optical trapping data, suggesting that the motors' diffusive movements on the vesicle surface and the extent of their engagement with the two intersecting actin tracks biases the motor-cargo complex on average to go straight through the intersection.


Assuntos
Citoesqueleto de Actina/química , Lipossomos/química , Cadeias Pesadas de Miosina/química , Actinas/química , Transporte Biológico , Calibragem , Citoesqueleto/metabolismo , Difusão , Imageamento Tridimensional , Cinesinas/química , Lasers , Microscopia de Fluorescência , Modelos Biológicos , Ligação Proteica
8.
J Biol Chem ; 292(26): 10998-11008, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28476885

RESUMO

Myosin Vc (myoVc) is unique among vertebrate class V myosin isoforms in that it requires teams of motors to move continuously on single actin filaments. Single molecules of myoVc cannot take multiple hand-over-hand steps from one actin-binding site to the next without dissociating, in stark contrast to the well studied myosin Va (myoVa) isoform. At low salt, single myoVc motors can, however, move processively on actin bundles, and at physiologic ionic strength, even teams of myoVc motors require actin bundles to sustain continuous motion. Here, we linked defined numbers of myoVc or myoVa molecules to DNA nanostructures as synthetic cargos. Using total internal reflectance fluorescence microscopy, we compared the stepping behavior of myoVc versus myoVa ensembles and myoVc stepping patterns on single actin filaments versus actin bundles. Run lengths of both myoVc and myoVa teams increased with motor number, but only multiple myoVc motors showed a run-length enhancement on actin bundles compared with actin filaments. By resolving the stepping behavior of individual myoVc motors with a quantum dot bound to the motor domain, we found that coupling of two myoVc motors significantly decreased the futile back and side steps that were frequently observed for single myoVc motors. Changes in the inter-motor distance between two coupled myoVc motors affected stepping dynamics, suggesting that mechanical tension coordinates the stepping behavior of two myoVc motors for efficient directional motion. Our study provides a molecular basis to explain how teams of myoVc motors are suited to transport cargos such as zymogen granules on actin bundles.


Assuntos
Citoesqueleto de Actina/química , Cadeias Pesadas de Miosina/química , Miosina Tipo V/química , Pontos Quânticos/química , Vesículas Secretórias/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Transporte Biológico Ativo , Camundongos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo
9.
Biophys J ; 111(10): 2228-2240, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851945

RESUMO

Myosin Va (myoVa) is a processive, actin-based molecular motor essential for intracellular cargo transport. When a cargo is transported by an ensemble of myoVa motors, each motor faces significant physical barriers and directional challenges created by the complex actin cytoskeleton, a network of actin filaments and actin bundles. The principles that govern the interaction of multiple motors attached to the same cargo are still poorly understood. To understand the mechanical interactions between multiple motors, we developed a simple in vitro model in which two individual myoVa motors labeled with different-colored Qdots are linked via a third Qdot that acts as a cargo. The velocity of this two-motor complex was reduced by 27% as compared to a single motor, whereas run length was increased by only 37%, much less than expected from multimotor transport models. Therefore, at low ATP, which allowed us to identify individual motor steps, we investigated the intermotor dynamics within the two-motor complex. The randomness of stepping leads to a buildup of tension in the linkage between motors-which in turn slows down the leading motor-and increases the frequency of backward steps and the detachment rate. We establish a direct relationship between the velocity reduction and the distribution of intermotor distances. The analysis of run lengths and dwell times for the two-motor complex, which has only one motor engaged with the actin track, reveals that half of the runs are terminated by almost simultaneous detachment of both motors. This finding challenges the assumptions of conventional multimotor models based on consecutive motor detachment. Similar, but even more drastic, results were observed with two-motor complexes on actin bundles, which showed a run length that was even shorter than that of a single motor.


Assuntos
Citoesqueleto de Actina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Actinas/metabolismo , Animais , Transporte Biológico , Cinética , Camundongos , Modelos Moleculares , Cadeias Pesadas de Miosina/química , Miosina Tipo V/química , Conformação Proteica
10.
J Biophys ; 2015: 465693, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26770194

RESUMO

Myosin Va (MyoVa) is a processive molecular motor involved in intracellular cargo transport on the actin cytoskeleton. The motor's processivity and ability to navigate actin intersections are believed to be governed by the stiffness of various parts of the motor's structure. Specifically, changes in calcium may regulate motor processivity by altering the motor's lever arm stiffness and thus its interhead communication. In order to measure the flexural stiffness of MyoVa subdomains, we use tethered particle microscopy, which relates the Brownian motion of fluorescent quantum dots, which are attached to various single- and double-headed MyoVa constructs bound to actin in rigor, to the motor's flexural stiffness. Based on these measurements, the MyoVa lever arm and coiled-coil rod domain have comparable flexural stiffness (0.034 pN/nm). Upon addition of calcium, the lever arm stiffness is reduced 40% as a result of calmodulins potentially dissociating from the lever arm. In addition, the flexural stiffness of the full-length MyoVa construct is an order of magnitude less stiff than both a single lever arm and the coiled-coil rod. This suggests that the MyoVa lever arm-rod junction provides a flexible hinge that would allow the motor to maneuver cargo through the complex intracellular actin network.

11.
Cell Rep ; 8(5): 1522-32, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25159143

RESUMO

It is unclear whether the reverse-direction myosin (myosin VI) functions as a monomer or dimer in cells and how it generates large movements on actin. We deleted a stable, single-α-helix (SAH) domain that has been proposed to function as part of a lever arm to amplify movements without impact on in vitro movement or in vivo functions. A myosin VI construct that used this SAH domain as part of its lever arm was able to take large steps in vitro but did not rescue in vivo functions. It was necessary for myosin VI to internally dimerize, triggering unfolding of a three-helix bundle and calmodulin binding in order to step normally in vitro and rescue endocytosis and Golgi morphology in myosin VI-null fibroblasts. A model for myosin VI emerges in which cargo binding triggers dimerization and unfolds the three-helix bundle to create a lever arm essential for in vivo functions.


Assuntos
Cadeias Pesadas de Miosina/química , Multimerização Proteica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Endocitose , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Camundongos , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/metabolismo , Estrutura Terciária de Proteína , Suínos
12.
Traffic ; 14(1): 70-81, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23046080

RESUMO

Myosin VI (myoVI) and myosin Va (myoVa) serve roles both as intracellular cargo transporters and tethers/anchors. In both capacities, these motors bind to and processively travel along the actin cytoskeleton, a network of intersecting actin filaments and bundles that present directional challenges to these motors. Are myoVI and myoVa inherently different in their abilities to interact and maneuver through the complexities of the actin cytoskeleton? Thus, we created an in vitro model system of intersecting actin filaments and individual unipolar (fascin-actin) or mixed polarity (α-actinin-actin) bundles. The stepping dynamics of individual Qdot-labeled myoVI and myoVa motors were determined on these actin tracks. Interestingly, myoVI prefers to stay on the actin filament it is traveling on, while myoVa switches filaments with higher probability at an intersection or between filaments in a bundle. The structural basis for this maneuverability difference was assessed by expressing a myoVI chimera in which the single myoVI IQ was replaced with the longer, six IQ myoVa lever. The mutant behaved more like myoVI at actin intersections and on bundles, suggesting that a structural element other than the lever arm dictates myoVI's preference to stay on track, which may be critical to its role as an intracellular anchor.


Assuntos
Citoesqueleto de Actina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Citoesqueleto de Actina/química , Actinina/química , Actinina/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Galinhas , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Movimento (Física) , Mutação , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/química , Suínos
13.
Biophys J ; 103(4): 728-37, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22947934

RESUMO

Myosin Va is a double-headed cargo-carrying molecular motor that moves processively along cellular actin filaments. Long processive runs are achieved through mechanical coordination between the two heads of myosin Va, which keeps their ATPase cycles out of phase, preventing both heads detaching from actin simultaneously. The biochemical kinetics underlying processivity are still uncertain. Here we attempt to define the biochemical pathways populated by myosin Va by examining the velocity, processive run-length, and individual steps of a Qdot-labeled myosin Va in various substrate conditions (i.e., changes in ATP, ADP, and P(i)) under zero load in the single-molecule total internal reflection fluorescence microscopy assay. These data were used to globally constrain a branched kinetic scheme that was necessary to fit the dependences of velocity and run-length on substrate conditions. Based on this model, myosin Va can be biased along a given pathway by changes in substrate concentrations. This has uncovered states not normally sampled by the motor, and suggests that every transition involving substrate binding and release may be strain-dependent.


Assuntos
Fenômenos Mecânicos , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Fenômenos Biomecânicos , Cinética , Modelos Moleculares , Fosfatos/metabolismo , Ligação Proteica , Conformação Proteica
14.
Proc Natl Acad Sci U S A ; 108(34): E535-41, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21808051

RESUMO

Myosin Va (myoV) and myosin VI (myoVI) are processive molecular motors that transport cargo in opposite directions on actin tracks. Because these motors may bind to the same cargo in vivo, we developed an in vitro "tug of war" to characterize the stepping dynamics of single quantum-dot-labeled myoV and myoVI motors linked to a common cargo. MyoV dominates its myoVI partner 79% of the time. Regardless of which motor wins, its stepping rate slows due to the resistive load of the losing motor (myoV, 2.1 pN; myoVI, 1.4 pN). Interestingly, the losing motor steps backward in synchrony with the winning motor. With ADP present, myoVI acts as an anchor to prevent myoV from stepping forward. This model system emphasizes the physical communication between opposing motors bound to a common cargo and highlights the potential for modulating this interaction by changes in the cell's ionic milieu.


Assuntos
Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Citoesqueleto de Actina/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Camundongos , Modelos Biológicos , Sus scrofa
15.
Methods Mol Biol ; 778: 111-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21809203

RESUMO

Recent advances in single-molecule labeling and detection techniques allow high-resolution imaging of the motion of single molecules. Molecular motors are biological machines that convert chemical energy into mechanical work. Myosin Va (MyoVa) is a well-characterized processive molecular motor, essential for cargo transport in living organisms. Quantum dots (Qdots) are fluorescent semiconductor nanocrystals that are extremely useful for single-molecule studies in biological sciences. High-resolution video microscopy and single-particle tracking of a Qdot-labeled MyoVa motor molecule allow the detection of individual steps in vitro and in live cells.


Assuntos
Microscopia de Fluorescência/métodos , Proteínas Motores Moleculares/metabolismo , Pontos Quânticos , Actinas/metabolismo , Miosinas/metabolismo
16.
Traffic ; 10(10): 1429-38, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19682327

RESUMO

The processive motor kinesin-1 moves unidirectionally toward the plus end of microtubules. This process can be visualized by total internal reflection fluorescence microscopy of kinesin bound to a carboxylated quantum dot (Qdot), which acts both as cargo and label. Surprisingly, when kinesin is bound to an anti-HIS Qdot, it shows diffusive movement on microtubules, which decreased in favor of processive runs with increasing salt concentration. This observation implies that kinesin movement on microtubules is governed by its conformation, as it is well established that kinesin undergoes a salt-dependent transition from a folded (inactive) to an extended (active) molecule. A truncated kinesin lacking the last 75 amino acids (kinesin-Delta C) showed both processive and diffusive movement on microtubules. The extent of each behavior depends on the relative amounts of ADP and ATP, with purely diffusive movement occurring in ADP alone. Taken together, these data imply that folded kinesin.ADP can exist in a state that diffuses along the microtubule lattice without expending energy. This mechanism may facilitate the ability of kinesin to pick up cargo, and/or allow the kinesin/cargo complex to stay bound after encountering obstacles.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Clonagem Molecular , Difusão , Metabolismo Energético , Escherichia coli/genética , Cinesinas/genética , Camundongos , Movimento , Conformação Proteica , Dobramento de Proteína , Transporte Proteico , Pontos Quânticos
17.
Biophys J ; 97(2): 509-18, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19619465

RESUMO

Myosin Va (myoVa) is an actin-based intracellular cargo transporter. In vitro experiments have established that a single myoVa moves processively along actin tracks, but less is known about how this motor operates within cells. Here we track the movement of a quantum dot (Qdot)-labeled myoVa HMM in COS-7 cells using total internal reflectance fluorescence microscopy. This labeling approach is unique in that it allows myoVa, instead of its cargo, to be tracked. Single-particle analysis showed short periods (

Assuntos
Actinas/metabolismo , Movimento , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Pontos Quânticos , Animais , Transporte Biológico , Células COS , Bovinos , Chlorocebus aethiops , Citoesqueleto/metabolismo , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Método de Monte Carlo , Cadeias Pesadas de Miosina/análise , Miosina Tipo V/análise , Coloração e Rotulagem
18.
Proc Natl Acad Sci U S A ; 105(12): 4691-6, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18347333

RESUMO

Organelle transport to the periphery of the cell involves coordinated transport between the processive motors kinesin and myosin V. Long-range transport takes place on microtubule tracks, whereas final delivery involves shorter actin-based movements. The concept that motors only function on their appropriate track required further investigation with the recent observation that myosin V undergoes a diffusional search on microtubules. Here we show, using single-molecule techniques, that a functional consequence of myosin V's diffusion on microtubules is a significant enhancement of the processive run length of kinesin when both motors are present on the same cargo. The degree of run length enhancement correlated with the net positive charge in loop 2 of myosin V. On actin, myosin V also undergoes longer processive runs when kinesin is present on the same cargo. The process that causes run length enhancement on both cytoskeletal tracks is electrostatic. We propose that one motor acts as a tether for the other and prevents its diffusion away from the track, thus allowing more steps to be taken before dissociation. The resulting run length enhancement likely contributes to the successful delivery of cargo in the cell.


Assuntos
Drosophila melanogaster/metabolismo , Cinesinas/metabolismo , Miosina Tipo V/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Difusão , Camundongos , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Estrutura Secundária de Proteína
19.
Curr Opin Cell Biol ; 20(1): 41-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18226515

RESUMO

Intracellular cargo transport requires microtubule-based motors, kinesin and cytoplasmic dynein, and the actin-based myosin motors to maneuver through the challenges presented by the filamentous meshwork that comprises the cytoskeleton. Recent in vitro single molecule biophysical studies have begun to explore this process by characterizing what occurs as these tiny molecular motors happen upon an intersection between two cytoskeletal filaments. These studies, in combination with in vivo work, define the mechanism by which molecular motors exchange cargo while traveling between filamentous tracks and deliver it to its destination when going from the cell center to the periphery and back again.


Assuntos
Citoesqueleto/metabolismo , Proteínas Motores Moleculares/metabolismo , Animais , Transporte Biológico , Modelos Biológicos
20.
Proc Natl Acad Sci U S A ; 104(11): 4332-6, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17360524

RESUMO

Certain types of intracellular organelle transport to the cell periphery are thought to involve long-range movement on microtubules by kinesin with subsequent handoff to vertebrate myosin Va (myoVa) for local delivery on actin tracks. This process may involve direct interactions between these two processive motors. Here we demonstrate using single molecule in vitro techniques that myoVa is flexible enough to effectively maneuver its way through actin filament intersections and Arp2/3 branches. In addition, myoVa surprisingly undergoes a one-dimensional diffusive search along microtubules, which may allow it to scan efficiently for kinesin and/or its cargo. These features of myoVa may help ensure efficient cargo delivery from the cell center to the periphery.


Assuntos
Actinas/química , Microtúbulos/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Actinas/metabolismo , Animais , Sítios de Ligação , Bovinos , Galinhas , Citoesqueleto/metabolismo , Difusão , Processamento de Imagem Assistida por Computador , Cinesinas/química , Modelos Biológicos , Proteínas Motores Moleculares/química , Miosinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...